Vorlage:Ostern/Calc

Aus KyllburgWiki
Version vom 6. Januar 2016, 20:59 Uhr von Dussy (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „{{Dokumentation/Unterseite}} <onlyinclude><includeonly>{{#ifexpr:{{{1}}} > 1582|{{#expr:((21+((19*({{{1}}} mod 19)+(15+(floor((3*(floor({{{1}}}/100))+3)/4))-(…“)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Dokumentations-Unterseite Diese Seite ist eine Untervorlage von Vorlage:Ostern.


Herleitung

Gregorianischer Kalender

 
 1. die Säkularzahl:                                       K(X) = X div 100
 2. die säkulare Mondschaltung:                            M(K) = 15 + (3K + 3) div 4 - (8K + 13) div 25
 3. die säkulare Sonnenschaltung:                          S(K) = 2 - (3K + 3) div 4
 4. den Mondparameter:                                     A(X) = X mod 19
 5. den Keim für den ersten Vollmond im Frühling:        D(A,M) = (19A + M) mod 30
 6. die kalendarische Korrekturgröße:                    R(D,A) = (D + A div 11) div 29
 7. die Ostergrenze:                                    OG(D,R) = 21 + D - R
 8. den ersten Sonntag im März:                         SZ(X,S) = 7 - (X + X div 4 + S) mod 7
 9. die Entfernung des OS von der Ostergrenze
     (Osterentfernung in Tagen):                      OE(OG,SZ) = 7 - (OG - SZ) mod 7
10. das Datum des Ostersonntags als Märzdatum
    (32. März = 1. April usw.):                              OS = OG + OE

Kompakt:

(SET 1)
 1.          K(X) = X div 100
 2.          M(K) = 15 + (3K + 3) div 4 - (8K + 13) div 25
 3.          S(K) = 2 - (3K + 3) div 4
 4.          A(X) = X mod 19
 5.        D(A,M) = (19A + M) mod 30
 6.        R(D,A) = (D + A div 11) div 29
 7.       OG(D,R) = 21 + D - R
 8.       SZ(X,S) = 7 - (X + X div 4 + S) mod 7
 9.     OE(OG,SZ) = 7 - (OG - SZ) mod 7
10.            OS = OG + OE

"A div B" durch (floor(A/B)) ersetzen:
 
(SET 2)
 1.          K(X) = floor(X/100)
 2.          M(K) = 15 + (floor((3*K+3)/4)) - (floor((8*K + 13)/25))
 3.          S(K) = 2 - (floor((3*K+3)/4))
 4.          A(X) = X mod 19
 5.        D(A,M) = (19*A + M) mod 30
 6.        R(D,A) = (floor((D + (floor(A/11)))/29))
 7.       OG(D,R) = 21 + D - R
 8.       SZ(X,S) = 7 - ((X + (floor(X/4)) + S) mod 7)
 9.     OE(OG,SZ) = 7 - ((OG - SZ) mod 7)
10.            OS = OG + OE

1 in 2 und 3  sowie 4 in 5 und 6:

(SET 3)
 2.          M(X) = 15 + (floor((3*(floor(X/100))+3)/4)) - (floor((8*(floor(X/100)) + 13)/25))
 3.          S(X) = 2 - (floor((3*(floor(X/100))+3)/4))
 5.        D(X,M) = (19*(X mod 19) + M) mod 30
 6.        R(D,X) = (floor((D + (floor((X mod 19)/11)))/29))
 7.       OG(D,R) = 21 + D - R
 8.       SZ(X,S) = 7 - ((X + (floor(X/4)) + S) mod 7)
 9.     OE(OG,SZ) = 7 - ((OG - SZ) mod 7)
10.            OS = OG + OE

2 in 5 sowie 3 in 8:

(SET 4)
 5.        D(X) = (19*(X mod 19) + (15 + (floor((3*(floor(X/100))+3)/4)) - (floor((8*(floor(X/100)) + 13)/25)))) mod 30
 6.      R(D,X) = (floor((D + (floor((X mod 19)/11)))/29))
 7.     OG(D,R) = 21 + D - R
 8.       SZ(X) = 7 - ((X + (floor(X/4)) + (2 - (floor((3*(floor(X/100))+3)/4)))) mod 7)
 9.   OE(OG,SZ) = 7 - ((OG - SZ) mod 7)
10.          OS = OG + OE

5 in 6 und 7:

(SET 5)
 6.        R(X) = (floor((((19*(X mod 19)+(15+(floor((3*(floor(X/100))+3)/4))-(floor((8*(floor(X/100))+13)/25)))) mod 30)+(floor((X mod 19)/11)))/29))
 7.     OG(X,R) = 21 + ((19*(X mod 19)+(15+(floor((3*(floor(X/100))+3)/4))-(floor((8*(floor(X/100))+13)/25)))) mod 30) - R
 8.       SZ(X) = 7 - ((X + (floor(X/4)) + (2 - (floor((3*(floor(X/100))+3)/4)))) mod 7)
 9.   OE(OG,SZ) = 7 - ((OG - SZ) mod 7)
10.          OS = OG + OE

6 in 7:

(SET 6)
 7.       OG(X) = 21 + ((19*(X mod 19)+(15+(floor((3*(floor(X/100))+3)/4))-(floor((8*(floor(X/100))+13)/25)))) mod 30) - (floor((((19*(X mod 19)+(15+(floor((3*(floor(X/100))+3)/4))-(floor((8*(floor(X/100))+13)/25)))) mod 30)+(floor((X mod 19)/11)))/29))
 8.       SZ(X) = 7 - ((X + (floor(X/4)) + (2 - (floor((3*(floor(X/100))+3)/4)))) mod 7)
 9.   OE(OG,SZ) = 7 - ((OG - SZ) mod 7)
10.          OS = OG + OE

8 in 9:

(SET 7)
 7.       OG(X) = 21 + ((19*(X mod 19)+(15+(floor((3*(floor(X/100))+3)/4))-(floor((8*(floor(X/100))+13)/25)))) mod 30) - (floor((((19*(X mod 19)+(15+(floor((3*(floor(X/100))+3)/4))-(floor((8*(floor(X/100))+13)/25)))) mod 30)+(floor((X mod 19)/11)))/29))
 9.    OE(OG,X) = 7 - ((OG - (7-((X+(floor(X/4))+(2-(floor((3*(floor(X/100))+3)/4)))) mod 7))) mod 7)
10.          OS = OG + OE

7 in 9 und 10:

(SET 8)
 9.       OE(X) = 7-(((21+((19*(X mod 19)+(15+(floor((3*(floor(X/100))+3)/4))-(floor((8*(floor(X/100))+13)/25)))) mod 30) - (floor((((19*(X mod 19)+(15+(floor((3*(floor(X/100))+3)/4))-(floor((8*(floor(X/100))+13)/25)))) mod 30)+(floor((X mod 19)/11)))/29))) - (7-((X+(floor(X/4))+(2-(floor((3*(floor(X/100))+3)/4)))) mod 7))) mod 7)
10.    OS(X,OE) = (21+((19*(X mod 19)+(15+(floor((3*(floor(X/100))+3)/4))-(floor((8*(floor(X/100))+13)/25)))) mod 30) - (floor((((19*(X mod 19)+(15+(floor((3*(floor(X/100))+3)/4))-(floor((8*(floor(X/100))+13)/25)))) mod 30)+(floor((X mod 19)/11)))/29))) + OE

9 in 10:

(SET 9)
10.    OS(X) = (21+((19*(X mod 19)+(15+(floor((3*(floor(X/100))+3)/4))-(floor((8*(floor(X/100))+13)/25)))) mod 30) - (floor((((19*(X mod 19)+(15+(floor((3*(floor(X/100))+3)/4))-(floor((8*(floor(X/100))+13)/25)))) mod 30)+(floor((X mod 19)/11)))/29))) + (7-(((21+((19*(X mod 19)+(15+(floor((3*(floor(X/100))+3)/4))-(floor((8*(floor(X/100))+13)/25)))) mod 30) - (floor((((19*(X mod 19)+(15+(floor((3*(floor(X/100))+3)/4))-(floor((8*(floor(X/100))+13)/25)))) mod 30)+(floor((X mod 19)/11)))/29))) - (7-((X+(floor(X/4))+(2-(floor((3*(floor(X/100))+3)/4)))) mod 7))) mod 7))

Julianischer Kalender

Für den Julianischen Kalender gelten die Konstanten M = 15 und S = 0. Diese in SET 2 eingesetzt ergibt für SET 5:

 

(SET 5a)
 5.        D(X) = (19*(X mod 19) + 15) mod 30
 6.        R(D,X) = (floor((D + (floor((X mod 19)/11)))/29))
 7.       OG(D,R) = 21 + D - R
 8.       SZ(X)   = 7 - ((X + (floor(X/4))) mod 7)
 9.     OE(OG,SZ) = 7 - ((OG - SZ) mod 7)
10.            OS = OG + OE

5 in 6 und 7:

(SET 6a)
 6.          R(X) = (floor((((19*(X mod 19) + 15) mod 30) + (floor((X mod 19)/11)))/29))
 7.       OG(X,R) = 21 + ((19*(X mod 19) + 15) mod 30) - R
 8.       SZ(X)   = 7 - ((X + (floor(X/4))) mod 7)
 9.     OE(OG,SZ) = 7 - ((OG - SZ) mod 7)
10.     OS(OG,OE) = OG + OE

6 in 7: 

(SET 7a)
 7.         OG(X) = 21 + ((19*(X mod 19) + 15) mod 30) - (floor((((19*(X mod 19) + 15) mod 30) + (floor((X mod 19)/11)))/29))
 8.         SZ(X) = 7 - ((X + (floor(X/4))) mod 7)
 9.     OE(OG,SZ) = 7 - ((OG - SZ) mod 7)
10.     OS(OG,OE) = OG + OE

8 in 9:

(SET 8a)
 7.         OG(X) = 21 + ((19*(X mod 19) + 15) mod 30) - (floor((((19*(X mod 19) + 15) mod 30) + (floor((X mod 19)/11)))/29))
 9.      OE(OG,X) = 7 - ((OG - (7 - ((X + (floor(X/4))) mod 7))) mod 7)
10.     OS(OG,OE) = OG + OE

7 in 9 und 10:

(SET 9a)
 9.      OE(X) = 7 - (((21+((19*(X mod 19)+15) mod 30) - (floor((((19*(X mod 19)+15) mod 30) + (floor((X mod 19)/11)))/29))) - (7 - ((X + (floor(X/4))) mod 7))) mod 7)
10.   OS(OE,X) = (21+((19*(X mod 19)+15) mod 30) - (floor((((19*(X mod 19)+15) mod 30) + (floor((X mod 19)/11)))/29))) + OE

9 in 10:

(SET 10)
10.      OS(X) = (21+((19*(X mod 19)+15) mod 30)-(floor((((19*(X mod 19)+15) mod 30)+(floor((X mod 19)/11)))/29)))+(7-(((21+((19*(X mod 19)+15) mod 30)-(floor((((19*(X mod 19)+15) mod 30)+(floor((X mod 19)/11)))/29)))-(7-((X +(floor(X/4))) mod 7))) mod 7))